dimanche 2 juillet 2017

Geometry

Geometry

Crystal Clear app 3d.png
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry is one of the two fields of pre-modern mathematics, the other being the study of numbers.
In modern times, geometric concepts have been extended. They sometimes show a high level of abstraction and complexity. Geometry now uses methods of calculus and abstract algebra, so that many modern branches of the field are not easily recognizable as the descendants of early geometry. (See areas of mathematics.) A geometer is one who works or is specialized in geometry.

Geometry

An illustration of Desargues' theorem, an important result in Euclidean and projective geometry
Geometry (from the Ancient Greekγεωμετρίαgeo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.
Geometry arose independently in a number of early cultures as a practical way for dealing with lengthsareas, and volumes. Geometry began to see elements of formal mathematical science emerging in the West as early as the 6th century BC.[1] By the 3rd century BC, geometry was put into an axiomatic form by Euclid, whose treatment, Euclid's Elements, set a standard for many centuries to follow.[2] Geometry arose independently in India, with texts providing rules for geometric constructions appearing as early as the 3rd century BC.[3] Islamic scientists preserved Greek ideas and expanded on them during the Middle Ages.[4] By the early 17th century, geometry had been put on a solid analytic footing by mathematicians such as René Descartes and Pierre de Fermat. Since then, and into modern times, geometry has expanded into non-Euclidean geometry and manifolds, describing spaces that lie beyond the normal range of human experience.[5]
While geometry has evolved significantly throughout the years, there are some general concepts that are more or less fundamental to geometry. These include the concepts of points, lines, planes, surfaces, angles, and curves, as well as the more advanced notions of manifolds and topology or metric.[6]
Contemporary geometry has many subfields:
Geometry has applications to many fields, including art, architecture, physics, as well as to other branches of mathematics.

Aucun commentaire:

Enregistrer un commentaire